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ABSTRACT

Expanding the scope of enantioselective catalysis via DKR, transfer hydrogenation of a variety of cyclic a-halo ketones was accomplished
using the Noyori/lkariya ( R,R)- or (S,S)-I catalysts and either HCO ,H/EtsN or HCO,Na/n-BusNBr in H ,0/CH,Cl; as the hydrogen sources. Good
yields of vicinal bromo-, chloro-, and fluorohydrins with excellent de and ee levels were achieved in most cases after a simple tuning of
reaction conditions.

Vicinal halohydrins are versatile building blocks and key with conventional separation techniques or classical kinetic
intermediates for the synthesis of many bioactive compounds,resolutions, is established as the most efficient technique for
and the development of methods for their asymmetric the resolution of racemates. The seminal work by the Néyori
synthesis has therefore attracted much attertiBmough a and Gei# groups on the catalytic hydrogenation ke-
number of methods are known, there is still need of a generaltoesters via DKR has found a number of applicatfcarsd
approach to the enantioselective synthesis of cyidigicinal stimulated the development of related reactions such as the
halohydrins. transfer hydrogenation of 1,2-diketoR@sd of several types

On the other hand, dynamic kinetic resolution (DKR), of 2-substituted ketonésRecently, we have reported on the
not limited by the theoretical 50% maximum yield associated transfer hydrogenation af-alkyl(aryl) cyclic ketimines as
the first process involving reduction ofN bond via DKR’
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diastereoselective nucleophilic substitutionsxeibdo- and
a-bromoesters and amideand to the hydrogenation of Scheme 2. Asymmetric Transfer Hydrogenation ofHalo

a-chloro-3-ketoesters by Ru(ll)-diphosphine catalysts. Indanones and Tetralones

Even considering the sensibility ofhalo ketones toward o}
substitutions and/or eliminations, a global analysis of the (R.A)-1{0.5 mol %) @th\‘_”
above information suggests that hydrogenation of haloketones 5:2 HOOH/EN (A)
via DKR under appropriate conditions should provide a nenX=Br (i)_so

valuable tool for the synthesis of the title compounds
(Scheme 1). n (R,R)- or (S,8)-1 (0.5 mol %) n

X X
HCO,H/Et,N (A)
0 or OH
I o HOOxNa, TEAST (B) gn=tix=gr
Scheme 1. Transfer Hydrogenation af-Halo Ketones via o= r o EnIEkIe
DKR; A Synthetic Route to Halohydrins =2 x=0l AR - tN\R& v
[Ru], [Ir] or [Rh] (catalysts) (®)-11:n=2;X=F PR H; “al 13:n=2;X=F
* "R ProH/base or HCOH/ELN *'R
O(NRY) OH(NHRY)
R = Alkyl, aryl Alcohols, amines
catalyst. Under these conditions (B), the desired reduction
W/l*yx Conditions ?? \z/gx takes place smoothly to affordds-2-bromo-1-indanob in
o Transfer hydrogenation SH 84% vyield and with excellent ee99% (Table 1, entry 1).
X = Halogen DKR Helohydring The chlorinated analogu® resisted even condition&,!?

leading to the desired produ@tin 88% yield, again with
excellent de and ee levels (entry 2). For comparison purposes,
conditionsB were applied with similar results (entry 3).

A slow racemization of the halogen-containing stereocenter
was initially considered as a possible explanation for the long
reaction times required for completion. Though highly basic
conditions cannot be used, it was found that a slight
modification of the HCGH/EN ratio has a strong influence
in the reaction rate. After a short screening, an optimum 2:1
HCOH/E:N ratio was found to accelerate strontlyhe

Experiments were initally performed with 2-bromo- and
2-chloro- indanones and tetralones (+)-1ag substrates,
using the Noyori/lkariya [RuCI(TsDPEN)}cymene)] cata-
lysts (R,R)- or (S,S)-(Scheme 2) in 5:2 HCB/Et;N
azeotropic mixture as the solvent and hydrogen d6nor
(conditionsA). The alternative transfer hydrogenations from
2-propanol require a basic medium that would result in the
?ggY:r.moe: ttlﬁgeciﬁgehr:sgt;?cvsazt]}22222??;210%?;:;% reduction of2, affording cis chlorohydrin7 in 83% yield

0,
Et:N system should enable the required enolization of the and 99% ee (entry 4). _
substrates by bifunctional acid-basic catalysis under mild 1€ method was also extended to halogenated tetralones:

conditions. When this strategy was applied to 2-bromoindan- conditionsB were applied to 2-bromotetraloi3s leading to
1-onel, however, nucleophilic substitution by formate took bromohydrine8 with excellent diastero- and enantioselec-

place to afford the undesired produ(Scheme 2). Based tVvily, but in a poor 22% yield (entry 5). Fortunately, a
in a recent report by Deng and co-workétsye performed satisfactory 64% yield with comparable de and ee was

the reaction using aqueous HEMN& as the hydrogen donor achieved by increasing the amountreBwNBr to 30 mol

. . . 0 i
in a biphasic system antBwNBr (2%) as a phase transfer 70 (entry 6). For the chlorinated analog4g both the
“standard” conditionsA and the modified phase transfer
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Table 1. Enantioselective Synthesis of Halohydrins via DKR

entry substrate ¢ method cat. I’ product t(d) yield* de’ ee®
1 (:QWEN 1.0 B (5.9 ©:>‘~Br 5 84 >98 >99
o} oH
1 (1R,25)-6
2 mC' 2.0 A (5.,5) el 5 88 >98 98
o on
2 (1R,28)-7
3 2 1.0 B (R,R) (18,2R)-7 6 85 >98 94
4 2 1.0 Af (R,R) (18,2R)-7 1 83 >98 99
5 1.0 B (R,R) 6 22 >08 >99
Br Br
0 OH
3 (18,2R)-8
6 3 1.0 B® (5.5) (1R,28)-8 6 64 >08 96
7 2.0 A (5,5 @O 5 78 >98 92
Cl el
e} OH
4 (1R.25)-9
8 4 1.0 B (R,R) (1S,2R)-9 6 25 >98 >09
9 4 1.0 B¢ (R.R) (15,2R)-9 6 61 >98 96
10 4 1.0 A" (R,R) (1S,2R)-9 1 71 >98 >99
11 ©:\}wF 20 A (5,5) ©E>F 3 95 94 74
o oH
10 (1R28)12
12 10 1.0 A (R,R) (1S,2R)-12 6 72 >98 93
13 10 1.0 Al (R,R) (1S,2R)-12 1 92 >08 92
14 2.0 A (R,R) 3 98 50 98
F F
0 OH
1 (182R)13
15 11 1.0 A (5.5) (1R.25)-12 5 40 >98 99
16 11 1.0 A" (R,R) (15,2R)-13 1 98 74 96
17 11 0.5 A" (R.,R) (1S,2R)-13 1 98 94 97
18 QWBr 2.0 B (S.8 Br 1 80 >98 45
0 OH
14 (182R)-18
19 QMCI 1.0 A" (5.5) Q_CI 1 80 80 60
o OH
15 (15,2R)-19
20 2.0 B* (S,5) 1 84 70 80"
Br Br
) OH
16 (15,2R)-20
21 1.0 AP (R,R) O 1 79 94 90"
cl el
o] OH
17 (1R,28)-21

2|nitial concentration ofx-halo ketone” 0.5 mol % unless otherwise statédsolated yield 4 Determined by*H NMR. ¢ Determined by HPLC unless
otherwise stated.2:1 HCOH/EtsN used.9 30% of n-BwNBr used.h 1.2:1 HCQH/EtN used.’ 0.1 mol %./ Determined by*H and°F NMR analysis of
the Mosher estek Determined by HPLC of the benzoate.
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reativity often exhibited by fluorinated compounds, a similar lit.*>[0]?% —61.0 (c0.62, CHC}. (1R,29-7 had [0]*%: —51.5
behavior was observed in this case: transfer hydrogenation(c 0.8, CHC}), lit.*>[a]?% —52.0 € 0.6, CHC})], and those
of fluoroindanonel0 and fluorotetralonel 1 proceeded via  of (1S,2R)-8and (1R,2S)-2Qvere assigned by anomalous
DKR under condition#\ to afford fluorohydrinsl2 and13 dispersion effects in their corresponding X-ray diffraction
in excellent yields. Somé&rans isomers were observed in  analysis (Figure 1).

3% and 25%, respectively (entries 11 and 14), most probably,

due to the smaller steric repulsion by the fluorine atoms in _
the transition states leading tmans products. The ee was
excellent for13 (98% ee) but only moderate fdr2 (74%

ee), suggesting a screening for better results. Higher dilution
resulted in better de and ee values, but much lower yields ¢s

(entries 12 and 15). Once again, the 1.2:1 HBEN ‘i—;f .

Br1

mixture afforded faster reactiofisand better results fat2

(92% yield, >99:1 cis/trans, 92% ee) and3 (98% yield, S

87:13cidtrans 96% ee); this last result was further improved -

at higher dilution (0.5 M, 98% vyield; 97:8is/trans, 97% (1S.2R)y8 (15.2R)-20
ee) (entries 13, 16, and 17). Figure 1. X-Ray structures of (%,2R)-8and (1S,2R)-20.

Finally, the reactions of monocyclic substrates such as
cyclohexanone and cyclopentanone derivatives14—17
were also investigated. Applying optimized conditioms (
for bromo ketoned4 and16; A for chloro ketoned5 and
17), halohydrins18—21 were isolated in good yields and
moderate to good ee’s, though minor amounts13%) of

In conclusion, the catalytic transfer hydrogenation of
o-halo ketones via DKR appears as an efficient tool for the
synthesis of halohydrins, including bromo-, chloro-, and even
fluorohydrins. A simple tuning of the reaction conditions
allows the isolation of the desired products in good-to-
excellent yields and stereoselectivities in reasonable reaction
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